Expected Performance of KVN Telescope at 230GHz

Do-Young Byun EKVN Plan Meeting on 2017 Sep 5

Antenna Optics

- D = 21m
- Shaped Cassegrain
- Main reflector
 200 panels (6 rings)

- Four adjusters in each panel
- Panel Align with photogrametry
- Sub-reflector
 - X,Y,Z,Tip,Tilt control to compensate gravitational deformation

Aperture Efficiencies in 2014-15

Freq [GHz]	Aperture Efficiency [%]		
22	65		
43	63		
86	53		
129	40		

- * Measured Aeff of Yonsei at 97GHz was 54% in 2008.
- * A 100GHz test Rx was installed at Cassegrain focus without multifrequency quasi-optics.

KVN Aperture Efficiency

Surface Accuracy

	Normal Accuracy (μm) - Antedo TM-137	Night + Mild Wind Accuracy (μm)
Main Reflector	80	70
Alignment	65	65 (50)
Sub Reflector	53	53
Wind + Thermal + Gravity	50	30
Total RSS	126	112 (105)
Aeff_129 (%)	41	45 (47)
Aeff_230 (%)	15	20 (23)

Accuracy = $100\mu m$ —> Aeff_230 = 26% , Aeff_0 = 65% assumed

Possible Additional Loss

- Sub-reflector position
 - optimized with 86GHz
 - gain stability of 129GHz is not good for accurate measurement
- Quasi-Optics
 - beam alignment loss
 - different Z focus with frequency

Surface Accuracy

	Normal Accuracy (μm) - Antedo TM-137	Night + Mild Wind Accuracy (μm)	
Main Reflector	80	70	
Alignment	65	65 (50) -> 40	
Sub Reflector	53	53 -> 30	
Wind + Thermal + Gravity	50	30	
Total RSS	126	112 (105) -> 90	
Aeff_129 (%)	41	45 (47) -> 51	
Aeff_230 (%)	15	20 (23) -> 30	

Aeff_0 = 65% assumed

Weather

- Weather data from KVNFS
 - weather sensors on the top of observing building
 - Temperature could be overestimated (?)
- SRAO
 - tau0 ~ 0.16 (trans ~ 0.86) in cold winter
 - tau0 ~ 0.60 (trans ~ 0.55) in April

PWV

PWV (mm)	tau0	trans- parency	Tsys* (K) (Trx = 50/100K)	SEFD (KJy) (Aeff ~ 30%)
2.5	0.25	0.8	160 / 230	4.2 / 6.1
5.0	0.50	0.6	280 / 370	7.4 / 9.8
7.5	0.72	0.5	420 / 520	11.1 / 13.8

tau @ 171GHz ~ tau @ 230GHz

SFED of other Telescopes

Table 2: write caption here

Stations	Location	Diameter [m]	SEFD [Jy]	Status
ALMA 37	Chile	37×12	100	2017 -
APEX	Chile	12	3600	operational
GLT	Greenland	12	3000	2018 (planned)
IRAM 30m	Spain	30	1400	operational
JCMT	Hawaii	15	4700	operational
\mathbf{LMT}	Mexico	32	1400	operational
NOEMA1	France	15	5200	operational
SMA	Hawaii	8×6	4000	operational
\mathbf{SMT}	Arizona	10	11000	operational
SPART	Japan	10	10000	2018? (planned)
\mathbf{SPT}	South Pole	10	9000	operational
SRAO	Korea	6	40000	2018? (planned)

write footnote here.

from white paper on EA mm/submm VLBI

Servo System

- HPBW (230GHz) ~ 12"
- Pointing Accuracy
 - (Blind) Accuracy ~ 5" rms
 - significant increase in daytime due to thermal effect
 - Corrected Pointing Accuracy < 3" (16% loss)
 - Self Pointing < $2^{"}$ (8% loss)
- Tracking Accuracy < 1" rms
 - 2" p-p (need to check again)

Summary

- Surface Accuracy for 230GHz
 - not good
 - need to improve down to 90µm for Aeff = 30% (Panel Adjustment, Sub-Ref, etc)
- Weather Condition for 230GHz
 - good from Dec to Feb
 - marginal in March and April
- SEFD_230GHz ~ 10000Jy (Trx = 100K, Aeff = 30%)
- Pointing & Tracking
 - < 10% error of amplitude